

MAHA BARATHI ENGINEERING COLLEGE
 NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

 www.mbec.ac.in│Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

EC3501-WIRELESS COMMUNICATION LABORATORY

III Year/ V Semester B.E ECE

Regulation 2021

(As Per Anna University, Chennai syllabus)

Prepared By Verified By Approved By

Staff I/C (HoD/ECE) (Principal)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

SYLLABUS

PRACTICAL EXERCISES: 30 PERIODS

1. Modeling of wireless communication systems using Matlab (Two ray channel and

Okumura – Hata model).

2. Modeling and simulation of Multipath fading channel.

3. Design, analyze and test Wireless standards and evaluate the performance

measurements such as BER, PER, BLER, throughput, capacity, ACLR, EVM for 4G and

5G using Matlab.

4. Modulation: Spread Spectrum – DSSS Modulation & Demodulation.

5. Wireless Channel equalization: Zero-Forcing Equalizer (ZFE), MMSE Equalizer (MMSEE),

Adaptive Equalizer (ADE), Decision Feedback Equalizer (DFE).

6. Modeling and simulation of TDMA, FDMA and CDMA for wireless communication.

INDEX

S.NO. DATE TITLE OF THE

EXPERIMENT

PAGE MARK SIGNATURE

Expt. No.:1 Modeling of wireless communication systems using Matlab (Two

ray channel and Okumura – Hata model)
Date:

AIM:

To model and simulate wireless communication system for two ray channel and

okumura hata model using Matlab.

Software Required:

Matlab version 2014a

THEORY:

The two-ray ground-reflection model is a multipath radio propagation model

which predicts the path losses between a transmitting antenna and a receiving antenna

when they are in line of sight (LOS). Generally, the two antenna each have different

height. The received signal having two components, the LOS component and the

reflection component formed predominantly by a single ground reflected wave. When

the distance between antennas is less than the transmitting antenna height, two waves are

added constructively to yield bigger power. As distance increases, these waves add up

constructively and destructively, giving regions of up-fade and down-fade. As the

distance increases beyond the critical distance or first Fresnel zone, the power drops

proportionally to an inverse of fourth power of an approximation to critical distance may

be obtained by setting Δφ to π as the critical distance to a local maximum.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file.

3. Type the program.

4. Save in current directory.

5. Compile and Run the program.

6. If any error occurs in the program correct the error and run it again.

7. For the output see command window\ Figure window .

8. Stop the program.

CODING:

>> % Wireless Communication System Modeling

% Two-ray channel model and Okumura-Hata model

% System Parameters

frequency = 900e6; % Frequency in Hz

transmitterHeight = 50; % Transmitter height in meters

 receiverHeight = 10; % Receiver height in meters

distance = 100:100:1000; % Distance between transmitter and receiver in meters

% Two-ray Channel Model

Pt = 1; % Transmitted power in Watts

Gt = 1; % Transmitter antenna gain

Gr = 1; % Receiver antenna gain

 L = 1; % System loss

% Calculate received power using Two-ray channel model

Pr_two_ray = Pt * (Gt * Gr * (transmitterHeight * receiverHeight)^2) / (distance^4 * L);

% Okumura-Hata Model

 A = 69.55; % Model parameter

 B = 26.16; % Model parameter

C = 13.82; % Model parameter

D = 44.9; % Model parameter

X = 6.55; % Model parameter

hb = 30; % Base station height in meters

% Calculate path loss using Okumura-Hata model

PL_okumura_hata = A + B * log10(distance) + C * log10(frequency/1e6) + D - X * log10 (hb);

% Plotting

figure;

 plot(distance, Pr_two_ray, 'b-', 'LineWidth',2);

hold on;

plot(distance, PL_okumura_hata, 'r--','LineWidth', 2);

xlabel('Distance (m)');

ylabel('Received Power/Path Loss (dB)');

legend('Two-ray Channel Model', 'Okumura-Hata Model');

title('Wireless Communication System Modeling');

grid on;

Output:

RESULT :

Thus designing a model of wireless communication systems using Matlab (Two ray

channel and Okumura –Hata model) is achieved

AIM:

To design a Model and simulation of Multipath fading channel.

SOFTWARE REQUIRED:

Matlab version 2014

THEORY:

In wireless communication, fading is a phenomenon in which the strength and

quality of a radio signal fluctuate over time and distance. Fading is caused by a variety

of factors, including multipath propagation, atmospheric conditions, and the movement

of objects in the transmission path. Fading can have a significant impact on the

performance of wireless communication systems, particularly those that operate in

high-frequency bands.

 Multipath delay spread is a type of small-scale fading that occurs when a

transmitted signal takes multiple paths to reach the receiver.

 The different components of the signal can arrive at the receiver at different

times, causing interference and rapid variations in signal amplitude and phase.

 Multipath delay spread can cause Inter-Symbol Interference (ISI), where symbols

in the transmitted signal overlap and interfere with each other, leading to errors in

the received signal.

 The root means square (RMS) delay spread is a measure of the dispersion of

the signal and determines the frequency-selective characteristics of the channel.

 A higher RMS delay spread indicates a more frequency-selective channel, while a

lower RMS delay spread indicates a flatter, more frequency-invariant channel.

 Multipath delay spread can be mitigated by using techniques such as equalization,

diversity, and adaptive modulation.

 Equalization techniques are used to compensate for the time dispersion caused

by multipath delay spread.

Expt. No.:2

Modeling and simulation of Multipath fading channel
Date:

 Diversity techniques are used to combine multiple signal paths to mitigate the

effects of fading.

 Adaptive modulation techniques are used to adjust the modulation scheme and

data rate based on the channel conditions, allowing the system to adapt to

changes in the channel and maintain a reliable communication link.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. Stop the program.

 CODING:

% Simulation parameters

numSamples = 1000; % Number of samples

numPaths = 3; % Number of multipath paths

fadePower = 0.5; % Fading power

% Generate Rayleigh fading channel coefficients

h = sqrt(fadePower/2)*(randn(numPaths, numSamples) + 1i*randn(numPaths, numSamples));

% Generate transmitted signal

txSignal = randn(1, numSamples) + 1i*randn(1, numSamples);

% Simulate multipath fading channel

rxSignal = zeros(1, numSamples);

for path = 1:numPaths

rxSignal = rxSignal + h(path, :) .* txSignal;

end

% Plot the transmitted and received signals

t = 1:numSamples;

figure;

subplot(2,1,1);

plot(t, real(txSignal), 'b', t, imag(txSignal), 'r');

title('Transmitted Signal');

legend('In-phase', 'Quadrature');

xlabel('Time');

ylabel('Amplitude');

subplot(2,1,2);

plot(t, real(rxSignal), 'b', t, imag(rxSignal), 'r');

title('Received Signal');

legend('In-phase', 'Quadrature');

xlabel('Time');

ylabel('Amplitude');

OUTPUT :

RESULT:

Thus the designing of a Model and simulation of Multipath fading channel has been

achieved.

 AIM :

 Design, analyze and test Wireless standards and evaluate the performance

measurements such as BER, PER, BLER, throughput, capacity, ACLR, EVM for 4G and

5G using Matlab.

CODING:

% Define simulation parameters

numBits = 1e6; % Number of bits to transmit

EbNo_dB = 10; % Eb/No in dB

% Generate QPSK symbols

txSymbols = randi([0 3], 1, numBits);

modulatedSymbols = pskmod(txSymbols, 4, pi/4);

% Add noise to the symbols

EbNo =10^(EbNo_dB/10); noiseVar = 1 / (2 * EbNo);

noise = sqrt(noiseVar) * randn(size(modulatedSymbols));

rxSymbols = modulatedSymbols + noise;

% Apply Rayleigh fading channel

Fade Channel =

rayleighchan(1/1000,30);

fadedSymbols = filter(fadeChannel, rxSymbols);

% Demodulate received symbols

 demodulatedSymbols = pskdemod(fadedSymbols, 4, pi/4);

% Calculate Bit Error Rate (BER)

numErrors = sum(txSymbols ~=demodulatedSymbols);

ber = numErrors / numBits;

% Display results

fprintf('Bit Error Rate (BER): %.4f\n', ber);

Expt. No.:3 Design, analyze and test Wireless standards and evaluate the

performance measurements such as BER, PER, BLER,

throughput, capacity, ACLR, EVM for 4G and 5G using Matlab
Date:

OUTPUT:

Bit Error Rate (BER): 0.7512

RESULT:

Thus designing, analyzing and testing Wireless standards and evaluating the performance

measurements such as BER, PER, BLER, throughput, capacity, ACLR, EVM for 4G and

5G using Matlab has been achieved.

Expt. No.:4

Modulation: Spread Spectrum – DSSS Modulation &

Demodulation Date:

AIM:

To design modulation: Spread Spectrum – DSSS Modulation & Demodulation.

SOFTWARE REQUIRED:

Matlab version 2014

THEORY:

Direct-sequence spread spectrum in Wireless Networks is a technique that

transmits a data signal over a range of frequencies, spreading it uniformly across the

allocated spectrum. Direct-sequence spread spectrum is used to ensure that a particular

frequency band (and its corresponding range of frequencies) is kept free from

interference. This technique can be related to escaping the problem of co-channel

interference (like two different wireless networks transmitting on the same frequency

band) and cross-talk interference. Direct-sequence spread spectrum can also be used

as an alternative approach to orthogonal frequency division multiplexing, where the

baseband signal is encoded and transmitted across a quantity of fixed, predetermined

channels. In this situation, each channel may carry different information, data signals,

or time slots for different applications within the same network. Direct-sequence spread

spectrum has also been used to transmit data that is encrypted and, in some processes, it

is used to transmit non-data signals like power signaling or control signals.

Direct Sequence Spread Spectrum (DSSS) is a communication system that divides

the bandwidth of a radio channel into wide frequency bands and transmits these signals

over separate frequencies. In this frequency-hopping process, each signal is assigned a

different orthogonal sequence of frequencies.All other radios in the range must gain

each signal sequentially and then transmit it, which significantly reduces the risk of

interference from outside sources or jamming. The time required for this process is

proportional to the number of frequencies used for transmission.

When security agencies need to be ready to communicate secretly, DSSS can be

implemented so that their transmissions cannot be spied upon by other parties who are

monitoring broadcasts on a shorter wavelength or through tapping devices.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

CODING:

% DSSS Modulation and Demodulation Example

% Parameters

data = [1 0 1 0 1 1 0 0]; % Original data signal

spreadingCode = [1 1 0 1]; % Spreading code

spreadingFactor = length(spreadingCode);

% DSSS Modulation

modulatedSignal = [];

for i = 1:length(data)

chips = repmat(data(i), 1, spreadingFactor) .* spreadingCode;

modulatedSignal = [modulatedSignal chips];

end

% DSSS Demodulation

demodulatedSignal = [];

for i = 1:length(modulatedSignal)/spreadingFactor

chips = modulatedSignal((i-1)*spreadingFactor+1:i*spreadingFactor);

chipSum = sum(chips);

if chipSum>= spreadingFactor/2

 demodulatedSignal = [demodulatedSignal 1];

 else

 demodulatedSignal = [demodulatedSignal 0];

end

end

% Display Results disp('Original

Data:'); disp(data);

disp('Demodulated Data:');

disp(demodulatedSignal);

OUTPUT:

Original Data:

1 0 1 0 1 1 0 0

Demodulated Data:

1 0 1 0 1 1 0 0

RESULT:

Thus designing modulation: Spread Spectrum – DSSS Modulation & Demodulation has

been achieved.

AIM:

To design a wireless Channel equalization: Zero-Forcing Equalizer (ZFE), MMS

Equalizer (MMSEE), Adaptive Equalizer (ADE),Decision Feedback Equalizer (DFE).

APPARATUS REQUIRED :

PC with MATLAB Software

THEORY:

If the modulation bandwidth exceeds the coherent bandwidth of the radio channel ISI occur

and modulation pulses are spread in time. Equalization compensates for ISI(Inter symbol

interference)created by multipath within time dispersive channels. An equalizer within a

receiver compensates for the average range of expected channel amplitude and delay

characteristics.Equalizers can be classified as linear equalizer, non linear equalizer, zero forcing

equalizer, Adaptive equalizer,(MMSE)Minimum mean square error equalizer and decision

feedback equalizer.In zero forcing equalization the equalizer gk attempts to completely inverse

the channel by forcing ck*gk =₰(k-ko).

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8. 8.Stop the program.

Expt. No.:5
Wireless Channel equalization: Zero-Forcing Equalizer (ZFE),

MMSE Equalizer (MMSEE), Date:

ALGORITHM

Simulate the link by following these steps:

1.Generate the number of bits and Eb/No value

2.Modulate BPSK Signal

CODING :

% Zero-Forcing Equalizer (ZFE) MATLAB code

% Define the channel impulse

response h = [0.1 0.3 0.4 0.2];

% Generate random transmitted

symbols N = 100; % Number of

symbols symbols = randi([0, 1], 1, N);

% Convolve transmitted symbols with the channel impulse response

 received_signal = conv(symbols, h);

% Add AWGN (Additive White Gaussian Noise) to the received signal

snr_dB = 20;

% Signal-to-Noise Ratio (SNR) in dB

received_signal = awgn(received_signal, snr_dB, 'measured');

% Zero-Forcing Equalizer

% Define the length of the equalizer tap

L = length(h);

% Initialize the equalizer taps

equalizer_taps = zeros(1, L);

% Loop through each received symbol and perform equalization

equalized_symbols = zeros(1, N);

for n = 1:N

% Extract the received symbols for equalization received_symbols =

received_signal(n:n+L-1);

% Perform zero-forcing equalization

equalized_symbols(n) = equalizer_taps * received_symbols';

% Update the equalizer taps using the least squares algorithm

error = symbols(n) - equalized_symbols(n);

equalizer_taps = equalizer_taps + error * received_symbols / (received_symbols *

received_symbols');

end

% Print the original symbols and equalized symbols

disp('Original Symbols:');

disp(symbols); disp('Equalized

Symbols:');

disp(equalized_symbols);

OUTPUT:

Original Symbols:

Columns 1 through 19

1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1

Columns 20 through 38

1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0

Columns 39 through 57

1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1

Columns 58 through 76

0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0

Columns 77 through 95

0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1

Columns 96 through 100

0 1 0 0 0

Equalized Symbols:

Columns 1 through 11

0 1.0242 1.0351 -0.0148 0.8118 0.8423 0.2395 0.3127 0.8637 0.5667

1.0034

Columns 12 through 22

0.3164 0.8987 0.7162 -0.0194 0.8262 0.2108 0.3684 1.3409 0.6328 0.5942

0.7986

Columns 23 through 33

0.3903 1.3034 0.9963 0.6816 0.6242 0.6419 0.1078 0.9584 -0.0282 0.4643 -

0.0959

Columns 34 through 44

0.3857 0.3709 0.1746 1.1529 0.6859 -0.3254 0.6316 -0.1321 0.2851 0.6131

0.9881

Columns 45 through 55

0.1328 -0.3112 0.5753 0.4748 1.4226 0.8176 0.5202 0.2300 0.9991 0.4921 -

0.2495

Columns 56 through 66

0.2145 0.5610 1.0497 -0.3251 1.0165 -0.0410 1.1669 0.3767 1.3984 0.8522

0.7683

Columns 67 through 77

0.6932 0.4118 -0.0997 0.1789 0.1747 1.2491 0.0166 1.0660 -0.0451 0.5827 -

0.1786

Columns 78 through 88

0.2406 0.4407 0.5875 -0.0514 0.5994 1.4474 0.8587 0.6711 0.4184 0.5040

1.2422

Columns 89 through 99

0.4668 -0.0972 0.6936 -0.1060 0.7651 1.3313 0.6154 0.7091 0.0191 0.5241 -

0.1900

Column 100

0.0171

 -

2. MMSE CODE

% Parameters

M = 4; % Number of transmitted symbols

N = 1000; % Number of received

symbols SNRdB = 10; % Signal-to-

Noise Ratio in dB pilotSymbols = [1 -1 1 -1]; %

Known pilot symbols

% Generate random symbols

transmittedSymbols = randi([0 M-1], 1, N);

% Modulation

modulatedSymbols = qammod(transmittedSymbols, M);

% Channel

channel = [0.8 -0.4 0.2 -0.1];

% Example channel coefficients

channel Output = filter(channel, 1, modulatedSymbols);

% Add noise

SNR = 10^(SNRdB/10);

noiseVar = 1/(2*SNR);

noise = sqrt(noiseVar) * randn(1, length(channelOutput));

receivedSignal = channel Output + noise;

% Channel estimation using pilot symbols

pilotIndices = randperm(N, length(pilotSymbols));

 pilotSignal = receivedSignal(pilotIndices);

estimated Channel = conv(pilotSignal, conj(pilotSymbols(end:-1:1)));

estimatedChannel = estimatedChannel(end-length(channel)+1:end);

% MMSE equalization

Equalizer Coefficients = conj(estimated Channel) ./ (abs(estimated Channel).^2 +

noiseVar);

equalized Symbols = filter(equalizer Coefficients, 1, receivedSignal);

% Demodulation

Demodulated Symbols = qamde mod(equalizedSymbols, M);

% Calculate bit error rate

bitErrors = sum(transmitted Symbols ~= demodulatedSymbols);

bitErrorRate = bitErrors / N;

disp(['Bit Error Rate: ' num2str(bitErrorRate)]);

output:

Bit Error Rate: 0.787

ADE:

% Parameters

channel_length = 10; % Length of the channel impulse

response snr_db = 20; % Signal-to-noise ratio in dB

num_symbols = 1000; % Number of symbols to

transmit mu = 0.01; % LMS step size

 % Generate random symbols

data_symbols = randi([0, 1], 1, num_symbols);

% Modulate symbols (e.g., BPSK modulation)

modulated_symbols = 2 * data_symbols - 1;

% Create the channel impulse response

channel = (randn(1, channel_length) + 1i * randn(1, channel_length)) / sqrt(2);

% Convolve the modulated symbols with the channel

received_symbols = filter(channel, 1, modulated_symbols);

% Add noise to the received signal

noise_power = 10^(-snr_db / 10);

noise = sqrt(noise_power) * (randn(1, length(received_symbols)) + 1i * randn(1,

length(received_symbols)));

received_symbols_noisy = received_symbols + noise;

% Adaptive equalizer using the LMS algorithm

equalizer_length = channel_length;

 % Set the equalizer length to match the channel length

 equalizer = zeros(1, equalizer_length);

output_signal = zeros(1, length(received_symbols_noisy));

for i = equalizer_length:length(received_symbols_noisy)

% Extract the received symbols for the current equalizer window

received_window = received_symbols_noisy(i:-1:i-equalizer_length+1);

% Compute the equalizer output

output_signal(i) = equalizer * received_window.';

% Compute the error

error = modulated_symbols(i) - output_signal(i);

% Update the equalizer coefficients

equalizer = equalizer + mu * conj(error) * received_window;

end

% Demodulate the equalized symbols (decision-directed) demodulated_symbols =

real(output_signal) > 0;

% Calculate the bit error rate (BER)

ber = sum(data_symbols ~= demodulated_symbols) / num_symbols;

disp(['Bit Error Rate (BER): ', num2str(ber)]);

output:

Bit Error Rate (BER): 0.519

RESULT:

 Thus designing a wireless Channel equalization: Zero-Forcing Equalizer (ZFE),

MMS Equalizer(MMSE), Adaptive Equalizer (ADE),Decision Feedback Equalizer (DFE)

has been achieved.

AIM:

To model and simulate TDMA, FDMA and CDMA for wireless communication.

SOFTWARE REQUIRED:

Matlab version 2014

THEORY:

Access methods are multiplexing techniques that provide communications services to

multiple users in a single-bandwidth wired or wireless medium. There are five basic access or

multiplexing methods: frequency division multiple access (FDMA), time division multiple

access (TDMA), code division multiple access (CDMA), orthogonal frequency division

multiple access (OFDMA), and spatial division multiple access (SDMA). Each one of these

takes advantage of multiplexing methods, dividing the bandwidth of the signal into different

sub-bands, which are then assigned to different users in order to allow multiple users to share a

single channel. Multiplexing is a communications technique that multiplexes, or combines,

multiple signals into a single signal. The reverse process is called demultiplexing.

In FDMA, the time slots are assigned to the users in a sequential fashion. In TDMA, the time

slots are assigned to the users in a random fashion. In CDMA, the time slots are assigned to

the users based on their code sequences.

FDMA:

FDMA is the process of dividing one channel or bandwidth into multiple individual

bands, each for use by a single user . Each individual band or channel is wide enough to

accommodate the signal spectra of the transmissions to be propagated. The data to be

transmitted is modulated on to each subcarrier, and all of them are linearly mixed together.

TDMA:

TDMA is a digital technique that divides a single channel or band into time slots. Each

time slot is used to transmit one byte or another digital segment of each signal in sequential

serial data format. This technique works well with slow voice data signals, but it’s also useful

for compressed video and other high-speed data.

Expt. No.:6

Modeling and simulation of TDMA, FDMA and CDMA for

wireless communication Date:

CDMA:

CDMA is another pure digital technique. It is also known as spread spectrum because it

takes the digitized version of an analog signal and spreads it out over a wider bandwidth at a

lower power level. This method is called direct sequence spread spectrum (DSSS) as well as

The digitized and compressed voice signal in serial data form is spread by processing it in an

XOR circuit along with a chipping signal at a much higher frequency.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window 8.Stop

the program.

CODING:

1. TDMA

% Step 1: Define System

Parameters numUsers = 4;

timeSlotDuration = 1; % seconds

totalTimeSlots = 10;

channelGain = 0.8;

% Step 2: Generate User Traffic

userData = randi([0, 1], numUsers, totalTimeSlots);

% Step 3: Create Time Slots

timeSlots = linspace(0, timeSlotDuration*totalTimeSlots, totalTimeSlots);

% Step 4: Allocate Time Slots to Users

userSlots = mod(0:totalTimeSlots-1, numUsers) + 1;

% Step 5: Simulate Transmission

receivedData = zeros(numUsers, totalTimeSlots);

for slot = 1:totalTimeSlots

for user = 1:numUsers

if userSlots(slot) == user

% Simulate transmission for the current user in the time slot transmitted Data =

userData(user, slot);

% Simulate channel effects

receivedData(user, slot) = transmittedData * channelGain;

end

end

end

% Step 6: Evaluate Performance Metrics (e.g., BER)

bitErrorRate = sum(sum(xor(receivedData, userData))) / (numUsers * totalTimeSlots);

% Step 7: Visualize Results figure;

subplot(2, 1, 1);

stem(timeSlots, userData');

 title('User Traffic');

xlabel('Time (s)');

ylabel('Data');

legend('User 1', 'User 2', 'User 3', 'User 4');

subplot(2, 1, 2);

stem(timeSlots, receivedData');

title('Received Data');

xlabel('Time (s)');

ylabel('Data');

legend('User 1', 'User 2', 'User 3', 'User 4');

disp(['Bit Error Rate: ', num2str(bitErrorRate)]);

Output :

Bit Error Rate: 0.375

2.FDMA:

% System parameters

totalBandwidth = 10e6; % Total available bandwidth (Hz)

numUsers = 5; % Number of users

carrierFrequency = 1e6; % Carrier frequency (Hz)

userBandwidth = totalBandwidth / numUsers; % Bandwidth allocated to each user (Hz)

% Time parameters

samplingFrequency = 100e6; % Sampling frequency (Hz)

timeDuration = 1e-3; % Simulation duration (s)

time = 0:1/samplingFrequency:timeDuration;

% Generate user signals

userSignals = zeros(numUsers, length(time));

 for i = 1:numUsers

userFrequency = carrierFrequency + (i-1) * userBandwidth; % Frequency of user signal

userSignals(i, :) = sin(2*pi*userFrequency*time);

end

% Create the FDMA signal

fdmaSignal = sum(userSignals, 1);

% Add noise to the FDMA signal

snr = 10; % Signal-to-Noise Ratio (in dB)

noisySignal = awgn(fdmaSignal, snr, 'measured');

% Perform signal demodulation

demodulatedSignals = zeros(numUsers, length(time));

 for i = 1:numUsers

user Frequency = carrierFrequency + (i-1) * userBandwidth; % Frequency of user signal

demodulatedSignals(i, :) = noisySignal .* sin(2*pi*userFrequency*time);

end

% Plot the original user signals and the demodulated signals figure;

subplot(numUsers+1, 1, 1);

plot(time, fdmaSignal);

 title('FDMA Signal');

xlabel('Time (s)');

ylabel('Amplitude');

for i = 1:numUsers subplot(numUsers+1, 1, i+1);

 plot(time, demodulatedSignals(i, :));

title(['Demodulated Signal - User ', num2str(i)]);

xlabel('Time (s)');

ylabel('Amplitude');

end

 Output:

3.CDMA:

% CDMA Simulation Parameters

numBits = 1000; % Number of bits per user

chipRate = 1e6; % Chip rate (chips per second)

snr = 10; % Signal-to-Noise Ratio (dB)

% Generate random data bits for User 1 and User 2

user1Bits = randi([0, 1], 1, numBits);

user2Bits = randi([0, 1], 1, numBits);
% BPSK Modulation
user1Symbols = 2 * user1Bits - 1; % Map 0s to -1 and 1s to 1

user2Symbols = 2 * user2Bits - 1;

% Chip-level Spreading (using a simple chip sequence)

chipSequence = [1, -1, 1, 1, -1, 1, -1, -1]; % Chip sequence for spreading

user1SpreadSymbols = kron(user1Symbols, chipSequence);

user2SpreadSymbols = kron(user2Symbols, chipSequence);

% Add AWGN (Additive White Gaussian Noise) noiseVar = 10^(-snr/10);

% Noise variance

user1NoisySymbols = user1SpreadSymbols + sqrt(noiseVar/2) * randn(1,

length(user1SpreadSymbols));

user2NoisySymbols = user2SpreadSymbols + sqrt(noiseVar/2) * randn(1,

length(user2SpreadSymbols));

% Matched Filtering (correlation with chip sequence)

user1FilteredSymbols = filter(fliplr(chipSequence), 1, user1NoisySymbols);

user2FilteredSymbols = filter(fliplr(chipSequence), 1, user2NoisySymbols);

 % Symbol Detection (using correlation with chip sequence)

 user1DetectedBits =user1FilteredSymbols(1:length(user1Symbols)) > 0;

user2DetectedBits = user2FilteredSymbols(1:length(user2Symbols)) > 0;

% Bit Error Rate (BER) Calculation

berUser1 = sum(user1DetectedBits ~= user1Bits) / numBits;

berUser2 = sum(user2DetectedBits ~= user2Bits) / numBits;

% Display results

disp(['User 1 BER: ', num2str(berUser1)]);

disp(['User 2 BER: ', num2str(berUser2)]);

Output:

User 1 BER: 0.523

User 2 BER: 0.535

Result :

Thus modeling and simulation of TDMA, FDMA and CDMA for wireless

communication has been achieved.

VIVA QUESTIONS :

1. What is Okumura-Hata model in wireless communication?
2. What is the difference between Hata model and Okumura model?
3. Is the Hata model used for signal strength prediction?
4. What is wireless channel model?
5. What are the main wireless channels?
6. Which wireless channel is better?
7. What is multipath fading channel?
8. What are the effects of multipath fading?
9. What are multipath channels?
10. What are the causes of multipath?
11. What is the advantage of multipath?
12. How do you reduce multipath effects?
13. What are the disadvantages of multipath
14. What is the working principle of zero-forcing equalizer?
15. Why is zero forcing used?
16. What is the need of an equalizer?
17. What is the MMSE channel equalization?
18. What are channel equalization methods?
19. What is the function of the equalizer?
20. What is adaptive equalization of channel?
21. 8. What is DFE equalizer?
22. What is decision feedback equalizer technique?
23. Why is equalizer used?
24. What is the ACLR measurement in Matlab?
25. What is the ACLR requirement?
26. How to generate 5G signal in MATLAB?
27. What is the use of 5G toolbox in Matlab?
28. What is the full form of ACLR?
29. How do 5G antennas work?
30. What is the use of 5G toolbox in Matlab?
31. Why do we need spread spectrum?
32. What is spread spectrum modulation?
33. What are the types of spread spectrum?
34. What is the spread spectrum technique?
35. What is the formula for spectral spread?
36. What is the full form of DSSS?
37. What is the spreading factor of a spread spectrum?
38. What are the advantages of DSSS
39. What is the basic principle of TDMA?
40. What is TDMA used for?
41. Why GSM is called TDMA?
42. What is the basic principle of FDMA?
43. What is the frequency range of FDMA?
44. What are the applications of FDMA?
45. What is the principle of CDMA?
46. What technology is used in CDMA?
47. What is the noise power of a CDMA system?

	EC3501-WIRELESS COMMUNICATION LABORATORY
	Output:
	CODING :
	Result :
	Thus modeling and simulation of TDMA, FDMA and CDMA for wireless communication has been achieved.

